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The spatial fluctuations in an exactly soluble model for the irreversible aggrega- 
tion of clusters are treated. The model is characterized by rate constants 
K o = i + j for the clustering of an i- and a j-mer, and diffusion constants Dj - D. 
It is assumed that D ~> 1 (reaction-limited aggregation). Explicit expressions for 
the correlation functions at equal and at different times are calculated. The 
equal-time correlation functions show scaling behavior in the scaling limit. The 
correlation length remains finite as t--* 0% and the fluctuations become large 
at large times (t>~tD) in any dimension. The crossover time tD, at which 
the mean field theory (Smoluchowski's equation) breaks down, is given by 
tD ~ In D. These exact results imply that the upper critical dimension of this 
model is d c = ov and, hence, that there is no unique upper critical dimension in 
models for the irreversible aggregation of clusters. 

KEY WORDS: Spatial fluctuations; reaction-diffusion systems; aggregation; 
exponential growth; Smoluchowski theory. 

1. I N T R O D U C T I O N  

Within  the field of nonequ i l ib r ium statistical mechanics, i r r e v e r s i b l e  g r o w t h  

p r o c e s s e s  are a subject of cont inued  interest. The interest is part ly due to 
a mul t i tude  of fascinating physical phenomena  (phase transit ions,  scale 
invariance,  fractals), part ly to the impor tance  of technical applications. In 

many  fields of science and technology one is therefore interested in mathe-  
matical  predictions concerning the time evolut ion of aggregation processes. 
Pioneer ing work on the kinetic description of colloidal systems was done 
by von Smoluchowski.  (~) Von Smoluchowski  recognized that, in essence, 

cluster growth phenomena  are complex r e a c t i o n - d i f f u s i o n  p r o c e s s e s ,  and  
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can hence be described in terms of deterministic reaction-diffusion (or rate) 
equations. 

In the rate equation approach to aggregation processes (Smoluchowski 
theory(2'3)), spatial fluctuations are neglected. This is unfortunate for 
various reasons. First, from the point of view of stochastic theory, all the 
interesting information (such as production, spreading, and dissipation of 
correlations, or memory effects) is hidden in the fluctuations. Second, the 
size of the fluctuations provides a measure for the validity of the mean field 
theory: a description in terms of rate equations can be justified only if the 
fluctuations are small. Hence, it is of both theoretical and practical interest 
to study the spatial fluctuations about Smoluchowski's mean field 
approach. For this reason I present in this paper a model for the irrever- 
sible aggregation of clusters, where the spatial fluctuations can be studied 
in great detail. 

To study the fluctuations I use a general method for describing 
fluctuations in reaction-diffusion systems, namely van Kampen's "method 
of compounding moments. ''(4) In ref. 5 this method was applied to an 
aggregation model containing a second-order phase transition (gelation). 
In ref. 6, I applied the method to a second (nongelling) model, which can 
be characterized by a moderately slow (linear) increase of the average 
cluster size as a function of time. The purpose of this paper is to study the 
spatial fluctuations in a third model. The model to be discussed in this 
paper differs notably from the models considered previously (5'6/in that: (i) 
the model is nongelling, and (ii) the aggregation process proceeds rather 
vehemently, and is characterized by a fast (exponential) increase of the 
average cluster size as a function of time. 

Consider an aggregation process in a system of volume V, containing 
M monomeric units. Throughout, the unit of volume will be chosen such 
that the number density M/V= 1, and I take the thermodynamic limit 
( V ~  Go). In the aggregating system one has clusters of all possible sizes: 
monomers, dimers ..... In general a cluster containing k monomeric units is 
called a "k-mer," and the density of k-mers at position r and time t is 
denoted by uk(r, t). The quantities of interest, to be studied below, are, 
first, the concentrations (uk(r, t ) ) =  ck(r, t) and, second, the correlation 
functions (dUm(rl, tl)dun(r2, t2)), where I define AUm~-Urn--(blm). I 
distinguish between correlations at equal (tl = t2) and at different times 
(tl < t2). The basic assumption made in this paper is that the aggregation 
process is reaction-limited, i.e., that clusters diffuse over large distances 
(meet many other clusters) before they finally react. In this case it is 
possible (4'5) to derive closed kinetic equations for the average cluster 
numbers (concentrations) and the fluctuations about those averages. 

The macroscopic law for the concentrations ck(r, t) has in general the 
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form of a complicated nonlinear reaction-diffusion equation. However, an 
important simplification occurs if the initial distribution is spatially 
uniform: uk(r, 0) = ck(0). This will be the case of main interest in this paper. 
If the initial state is spatially uniform, the concentrations are spatially 
uniform at all times: ck(r, t ) =  c~(t), and the macroscopic law takes the 
form 

1 
8~( t )=~ ~ K~jci(t) c j ( t ) -c , ( t )  ~, Kkjcj(t) (k=1,2 , . . . )  (1.1) 

i + j = k  j =  ] 

Here K~ is the rate constant for the reaction between an t- and a j-mer. The 
rate equation (1.1) is known as Smoluchowski's coagulation equation ~-3) 
and has the property of mass conservation2: ~k  kck(t) = M/V = 1. 

Next consider the spatial fluctuations about the uniform non- 
equilibrium distribution ck(t ). From the translational invariance of uk(r, 0) 
it follows that the correlation functions depend only on the relative 
coordinates r = r l - r 2 .  Instead of the equal-time correlation functions 
(dumAu, )  introduced above, it is convenient to consider the factorial 
curnulants E~,(r, t), defined as 

Em,(r, t) --- (JUm(rl,  t) Au~(r2, t ) )  - O m n ~ ( r )  Cm(t ) (1.2) 

The factorial cumulants E,,~ satisfy a linear, inhomogeneous kinetic 
equation of the form 

L Em,(r , t ) =  ~ [AmjEjn + AnjEmj] + (D,, + D,) AE,~n-- Kmnc~cnfi(r ) 
~t 

J= ~ (1.3a) 

where D m is the diffusion constant for m-mers, and A =-~?Z/0rZ. The matrix 
Akj in (l.3a) is defined as 

Akj(t) = -- ~ Kiiei(6i~ + 6j~ - 6i+j,~) 
i = 1  

(1.3b) 

and the initial condition is 

Em,(r, 0) = -c~(r) bm,,Cm(O ) (1.3c) 

Equation (1.3) can be derived using the "method of compounding 
moments. ''(4-6) The physical meaning of the various terms in the right-hand 

2 In this paper only nongelling systems are considered. Possible complications due to gel 
formation (7~ need not worry us here. 
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side of (1.3a) is quite clear. The first term on the right couples the 
correlation functions Emn linearly to the concentrations G(t), and describes 
dissipation of fluctuations. The second term describes the spreading, or 
diffusion, of correlations, simply due to diffusion of m- and n-mers. Finally, 
the third terms on the right, proportional to Kmnc,~cn, represents the 
production of new fluctuations due to reactions between m- and n-reefs. The 
interplay of these three effects constitutes the physics of reaction-diffusion 
systems. 

Next consider the two-time correlation functions tgnm(r; t2, t~), defined 
as 

tr t2, tl) ~- (dUm(rl, tl) Au.(rz, t2)) (1.4) 

which satisfy a linearized version of the macroscopic law (1.1), namely 

L•nrn(r; t, t l )=  ~ MnjKjm-~ DnAKnm (1.5a) 
8t j--1 

to be solved with the initial condition 

Knm(r; tl, t l)=Emn(r, tl)q-Sm~6(r) Cm(tl) (1.5b) 

The linearity of Eq. (1.5a) reflects the decay (dissipation and diffusion) of 
information about the state of the system at time tl. The initial condition 
(1.5b) guarantees that l(.nm reduces to the correlation function ~ZIU m ZlUn) 
at equal times (t2 = t~) in the limit t2~. t 1. 

In this paper I consider a special model, characterized by the reaction 
and diffusion constants 

Ko.=i+ j (i, j =  1, 2,...) (1.6a) 

Dm =D (m=  1, 2,...) (1.6b) 

The sum kernel (1.6a) is considered a realistic model in various fields of 
science. In polymer chemistry (1.6a) serves as a stylized version of the 
classical polymer model ARBg of Flory and Stockmayer, (7-~~ but it 
has also been used, e.g., in colloid science, (11'~2) astrophysics, (13) cloud 
dynamics, (~4,15) and aerosol research.(2' 16) For Kij = i + j, Smoluchowski's 
equation (1.1) can be solved exactly (15) for a general initial distribution 
G(0). For example, for monodisperse initial conditions, G ( 0 ) = f k l ,  one 
finds from (1.1) that ok(t) is given by 

k k -  1 
G ( t ) = ( 1 - r ) ~ .  (ze ~)k; r--  1 - e  -~ (1.7) 
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From (1.7) it follows that the average cluster size s(t) =-~k k2ck(t) increases 
exponentially, s(t)= e:', while the concentrations ck(t) fall off algebraically 
at large times, ck(t)~ (2z)-a/2e-'k -3/2 for t>> I. The model (1.6b) for the 
diffusion constants is the simplest possible choice, (17 19) and presumably the 
only one that leads to an exact solution for the correlation functions. 
Extensions to more general models are discussed in Section 6. 

Concerning the fluctuations in the model K U = i + j ,  the following is 
known. The nonspatial fluctuations in finite systems were studied in refs. 11 
and 20. Nonspatial fluctuations are fluctuations, purely due to reactions, in 
a "well-stirred" system, where the diffusion constant D is infinitely large. To 
my knowledge, the spatial fluctuations (for finite D) have not been studied 
before. However, there exists a simple relation between the spatial 
correlation functions Emn(r, t) and tCmn(r; t2, tl) and the nonspatial correla- 
tion functions e,~,(t) and x,~(t2, t~) calculated in ref. 20, namely 

f dr Em,(r, t) = em,(t) (1.8a) 

f dr ~C~m(r; t2, t l ) =  ~C~m(t2, tl) (l.8b) 

This shows that the nonspatial correlation functions (D = oo) can also be 
interpreted as global correlation functions in the spatial problem (D finite). 

Apart from theoretical considerations, there are also experimental 
results supporting the model Kg = i + j for the reaction constants. Some of 
the most interesting recent experiments on reaction-limited aggregation 
have been carried out by Weitz and collaborators, (2~) who observe that (i) 
the average cluster size increases exponentially in time, while (ii) c~(t) falls 
off algebraically at large times, ck(t),,, A(t)k-~, with an exponent r -~ 1.5. 
As will be clear from (1.7), this is precisely what one would expect ~22~ if K~ 
were given by (1.6a). Other experiments showing exponential growth are 
described in refs. 23 and 24. An exponent r -~ 3/2 is found in ref. 25. 

The plan of this paper is as follows. The equal-time correlations (1.2) 
are discussed in Section 2, and the two-time correlations (1.4) in Section 3. 
Section 4 investigates the influence of statistical fluctuations in the initial 
state: it is assumed that uk(r, 0) is Poisson-correlated. In Section 5, I use 
the results obtained for the fluctuations to test the mean-field assumption 
underlying Smoluchowski's equation. The upper critical dimension for the 
model (1.6) is calculated in this section. Finally, Section6 contains a 
discussion of the results. In the bulk of this paper I assume that the initial 
state of the system is monodisperse. However, Eq. (1.3) can be solved for 
general initial conditions. The solution is given in Appendix A. Appendix B 
is a technical appendix. 
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2. T H E  E Q U A L - T I M E  C O R R E L A T I O N  F U N C T I O N S  

I consider only monodisperse initial conditions, Ck(O)=3kl. In this 
case it is possible to obtain a relatively simple, explicit form for the equal- 
time correlation functions Em~(r, t). In this section I sketch the method and 
give the results. Details are given in Appendices A and B. 

The correlation functions Emn(r, t) are determined by (1.3a), to be 
solved with the initial condition (1.3c). To solve Eq. (1.3), it is convenient 
to introduce the Fourier transform Fm,(q, t) of E,~(r, t), i.e., 

Fm~(q , t) -- f dr[-exp(iq �9 r)] Emn(r, t) (2.1) 

The kinetic equation for Fm, and its initial condition follow from (1.3) as 

L otFmn(q, t )=  ~ [Am;Fs,+ AnjFmj ] 
j = l  

- -  K m n c m C n  - -  (O,~ + O,)q2Fmn (2.2a) 

F,~,(q, 0 ) =  -6m, em(O) (2.2b) 

Equation (2.2), with Akj given by (1.3b), can be solved exactly for a general 
initial distribution ck(0) with the use of generating function techniques. The 
method and the results are presented in Appendix A. For monodisperse 
initial conditions the expression for the generating function found in 
Appendix A can in principle be inverted to yield the explicit form of 
Finn(q, t) and Emn(r, t). However, this calculation is rather lengthy, and it 
is much easier to simply verify that the outcome (to be presented below) 
satisfies Eq. (2.2). This check is carried out in Appendix B. 

One finds the following results. The correlation functions Fm,(q, t) 
have a remarkably simple form as a function of the cluster sizes m and n, 
namely 

F,~,(q, t ) =  [~l(q, t)+~2(q,  t)(m+n)+~3(q, t)mn] era(t)c,(t) (2.3) 

The concentrations C m ( t  ) a r e  given in (1.7). Note that the prefactor [ . . . ]  in 
(2.3) has the same bilinear structure as was found previously (6) for the 
model Ki~= 1. The q dependence of Fmn(q, t) is entirely contained in the 
functions c~i( q, t) (i = 1, 2, 3), which have the relatively simple form 

~(q,  t) = --e-2t6~3 + dt' Qi(t', t)(e 2Dq2t'- 1) e -2Dq2t, ( i=  1, 2, 3) 

(2.4) 
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where Qi(t', t) is an integral kernel, to be specified below. F rom the form 
(2.2) it is already obvious that, for q = 0, Fm,(q, t) reduces to the nonspatial 
cumulants emn(t), discussed near (1.8): 

Fm,(O, t )=  - e - 2 t m n  c,,(t) c , ( t )=  em,(t) (2.5) 

In the second step of (2.5) I used the explicit form of emn(t), known from 
ref. 20. For  Em~(r , t) it follows directly from (2.3) and (2.4) that 

E,,,(r,  t ) =  [Al(r,  t) +A2(r ,  t ) ( m + n ) + A 3 ( r ,  t) mn] cm(t) c,(t) (2.6a) 

where Ai(r, t) takes the form of a superposition of Gaussians, 

f2 A~(r, t) = dt' Q~(t', t ) [g(r ;  4 D ( t -  t')) - g(r; 4Dt)]  - c~,3 e-Z~g(r; 4Dt) 

(2.6b) 
In (2.6b) ! introduced the d-dimensional Gaussian distribution with zero 
mean and variance a 2, denoted as g(r, a2). 

The integral kernels Q~(t', t) in (2.4) are given for i = 1, 2, 3 by 

QI(t', t ) =  - 2 ( e  t -  l ) - 2 e 2 ( t + r ) ( t - t ' + e  - ' -  1 ) ( t - t ' - e - r  + e  -~) (2.7a) 

Q2(t', t) = (e t - 1)-2e2C [2(t  - t') 2 + 2(t - t')(e - f -  e -t.) 

- (1  - e - ' ) ( 1  - e - C ) ]  ( 2 . 7 b )  

Q3(t', t) = - 2 ( e ' -  1) -2e2(C-n(t - t ')(t - t' + 1 - e - " )  (2.7c) 

The importance of the various terms in (2.3) or (2.6a) is different in 
different limits. Clearly, at all times, A3 or Q3 is dominant  if one considers 
the limit of large cluster sizes (m, n ~ oo ): 

Em,(r, t) ~ A3(r, t) mncm(t ) c~(t) (m, n ~ oo) (2.8) 

On the other hand, at large times the first term on the right in (2.6a) is 
dominant.  This may be seen from (2.6b) and (2.7). One finds that for 
t ~ o o  

Al(r, t) ~ eZ~A~(r) 
(2.9a) 

.~1(r) ~ - 2  d t ' e - Z C t ' ( t ' - l ) g ( r ; 4 D t  ') 

A2(r, t).-- A2(r) 
(2.9b) 

A2(r) ~ f o  dt' e-2C[2(t ')  2 - 1] g(r; 4Dr') 

A3(r, t) ~ e-2 'A3(r)  
(2.9c) 

f? .,~3(r) = - 2  d t ' e - a C t ' ( t ' + l ) g ( r ; 4 D t  ') 
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For the large-time behavior of the correlation functions Emn this implies 

Emn(r, t) ~ e2'Al(r) Cm(t ) cn(t) (t ~ O0 ) (2.10) 

Equation (2.10) gives rise to the important observation that the spatial 
profile of the fluctuations assumes a constant form as t -~ oo. The behavior 
of the correlations at large times is not diffusive: the correlation length 
remains finite! 

The same phenomenon is observed in the scaling limit (S), which is the 
combined limit where the cluster sizes are large (m, n--* oo), and the 
average cluster size s(t) is large [ s ( t ) ~  ~ ] ,  with the ratios m/s(t) and 
n/s(t) kept fixed. The average cluster size is defined as s(t) - Zk kZck( t )  ' F o r  

the model K,j= i+j ,  one finds from (1.1) that s(t)= e 2t. In the scaling limit 
it is known (26 28) that the concentrations Cm(t ) approach a simple scale- 
invariant form, described by a scaling function ~,b(u)-= (2zc1/3)-X/2e-"/2: 

c,~(t) s s(t)_2~(m/s(t)) (2.11) 

Similarly, using the results in (2.9), one finds that the spatial fluctuations, 
too, approach a scale-invariant form in the scaling limit: 

Fm,(q, t) s , s(t)-3 q~(ul, ll2, Dt/2q) (2.12a) 

E,~n(r, t) s , s(t)_3 rl(ul, u2, r/O 1/2) (2.12b) 

where Ul=-m/s(t), u2=-n/s(t). The scaling function r/, which is simply 
related to ~b by Fourier transformation, is given by 

/'](1/1, U2' r~ Din) = [71(r) + A2(r)(ul h- u2) + A3(r) u112] ~(Ul) ~(u2) 

(2.13) 

Note that in the scaling limit, too, the correlation length remains finite, of 
the order of D 1/2. 

To what extent do the limiting results (2.8), (2.10), and (2.12) depend 
on the initial conditions? This question may be answered by applying the 
techniques developed in ref. 20 (Section 4) to the generating function of F,,, 
calculated in Appendix A. One finds that for general initial conditions: (i) 
the correlation function Emn , with m, n ~ 0% has the same form as in (2.8), 
but the prefactor A depends on the initial distribution; (ii) at large times 
the basic feature of (2.10) is retained: Emn(r, t) assumes a constant profile, 
but the profile depends on the initial conditions; (iii) the scaling law (2.12), 
(2.13) holds also for a general initial distribution: the scaling function t/is 
universal, i.e., does not depend on ck(0). 
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Finally, having in hand the results (2.6) and (2.3) for Em~(r , t) and 
Fm,(q, t), it is easy to calculate the density-density correlation function 
p(r, t) or its Fourier transform iS(q, t): 

~(q, t )=  ~" mn[Fm,(q, t)+ 6m, c~(t)] (2.14) 
m,n 

Insertion of (2.3) with (2.4) and (2.7) into (2.14) yields a very simple result 

;0 f i (q , t )=( l_e-2Dq2' )+ 2 dt' e2"[1-e -=~& ' ,')] (2.15) 

in complete agreement with the general result, Eq. (6.6) of ref. 6. At large 
times one finds that 

Dq2 --}ct) (t--+ ~ ;  all q r  (2.16) fi(q, t ) ~  e 2` 1 + Dq --'---~ 

implying that, as t --* oo, the density fluctuations grow exponentially fast at 
all length scales. 

3. THE T W O - T I M E  C O R R E L A T I O N  F U N C T I O N S  

To calculate the correlation functions ~:.m(r;/2, t~) it is convenient to 
introduce the Fourier transform ~.m(q; t2, tl) of X,,m' The Fourier trans- 
form satisfies a set of coupled ordinary differential equations, 

t, t~) ~ Anj(t) ~jm(q; t, t , )--  Dq2~.m(q; t, tl) (3.1a) 
j : l  

to be solved with the initial condition 

t~nm(q; tl, t~)= Fm.(q, tl)+DmnCn(tl) (3.1b) 

Equation (3.1) follows directly from Eq. (1.5) for tfnm. 
The kinetic equation (3.1) may be solved in various steps. The first 

step is to eliminate the last term on the right in (3.1a). For this purpose I 
introduce new functions a,m, defined as 

a.m(q; t, t~)---~.m(q; t, tl) e Dq2(t-tj) (3.2) 

The functions a,,~ satisfy the simpler equation 

L ~3t anm(q; t, tl) = ~, A.j(t) ajm(q; t, tx) (3.3) 
j = l  

822/58/1-2-7 
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and have the same initial value (3.1b) as ~nm" Note that (3.3) is a linear 
equation for anm. This implies that an~ is completely determined by the 
evolution matrix Y(t, tl) connected with the matrix A(t) in (3.3). The 
evolution matrix is defined by 

L Ynm(t, t l ) =  ~ Anj(t) yjm(t, tl ) (3.4a) 
Ot j = l  

Y~m(tl, t~) = 6~,~ (3.4b) 

Once Y in (3.4) is known, the solution a,,, of the problem (3.3) follows as 

a.m(q; t, tl) = ~ Y.j(t, tl) aj~(q; tl, tl) 
j = l  

(3.5) 

with %m(q; tl, ta) given by (3.1b). To determine the evolution matrix Y will 
therefore be the second step in the calculation of ~,m" 

The basic idea in the calculation of Y is that one can reduce the 
problem (3.4) to a problem that has already been solved in ref. 20. In this 
paper I calculated the evolution matrix Y~ t~) belonging to a matrix 
A~ related to A(t) in (1.3b) as 

A~ = A,j( t)  + jc ,( t )  (3.61 

The evolution matrix yo has the form (2~ 

= n  1 -- r-----~ 
L 

+ (1 -'c) (nT-mr1) . . . .  1 ] 
(n - m)! exp(m'c 1 - n'c) 

(3.7) 

(where r = 1 -  e - t  and z l -  1 -  e -'~) and has the properties 

S,(t ,  tl) =- ~ Y~ tl) jcj(tl)  = e" - 'nc , ( t )  (3.8a) 
J 

1 [ . C , l + ( l _ z ) ( r _ z l ) n  ] c.(t) (3.8b) S*(t, tl) ~ ~ YOnj(t, tl) cj(tl) = "~ 
J 

As we shall see below, it is possible to express the evolution matrix Y in 
(3.4) in terms of yO. 

To solve the problem (3.4), we substitute (3.6) into (3.4a): 

L Znm(t, t l )  ~_.~_ ~ A~ Yjm(t, tl)__Cn(t ) ~ JZjm(t ' tl ) 
~t j = l  j ~ l  

(3.9) 
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Multiplying Eq. (3.4a), or (3.9), with n, and summing over all n yields 
52, nY, rn=const. The initial condition (3.4b) implies that the constant is 
equal to m, so that (3.9) reduces to 

Y,rn(t, t l ) =  ~ A~ Yj'm(t, /1)--FnCn(~) (3.10) 
C3t j = l  

The solution of (3.10) may easily be guessed from the form of the 
inhomogeneity in (3.10). One finds that 

Ynm(t, tl).= zOrn(t, t l )+mz, ( t ,  tl) (3.11a) 

where t:,(t, t~) has the form 

Z,(t, t l ) ~  [a(t, tl) + b(t, tl)n] c,(t) (3.11b) 

and a(t, tl) and b(t, tl) are given by 

a(t, tl) = (e -'1 - e - ' -  t + h)/(1 - e ') (3.12a) 

b(t, t l ) =  - e - t i e - " -  e-t(1 +t - t~ ) ] / ( 1  - e  -t) (3.12b) 

The result (3.11), (3.12) may be obtained by substituting (3.11) into (3.10) 
and using the explicit form of A~ and c,,. One then obtains two differential 
equations for a and b that may readily be solved. The result is (3.12). 

The third and final step is the calculation of i,m(q; t2, tl). An explicit 
expression for t~,m may be obtained by combining the relation (3.2) 
between i , , ,  and a,,, with Eqs. (3.1b), (3.5), (3.8), and (3.11a). Inverse 
Fourier transformation of the result finally yields the two-time correlation 
functions ~c,,,(r; t2, tl): 

~C,m(r; t2, tl) = Cm(tl){ Y,m(t2, tl) g(r; 2D(t2-- tl)) 

+ [A1 (r; t2, tl) + A2(r; t2, t l)m ] [S*(t2, tl) + Z,,(t2, tl )] 

+ [A2(r; t2, t l ) +  A3(r; t2, t l )m][S,(t2,  t~)+e2'~Z,(t2, t l )]} 

(3.13) 

Here S,, S*, and )~, are defined, respectively, in (3.8a), (3.8b), and (3.11b) 
and 

tol Ai(r;t2, tl) =- d t 'Qi ( t ' , t l )Eg(r ;2D( t2+t~-2 t ' ) ) -g ( r ;2D( t2+t~) ) ]  

- -  ~i3 e - 2 ' 1  g(r; 2D(t 2 + t~)) (3.14) 
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The d-dimensional Gaussian distribution g(r, o -2) was introduced in (2.6b). 
Thus we find that ~Cnm has a simple structure: basically it is a superposition 
of Gaussians. 

To obtain some more insight into the wealth of information contained 
in K .... we consider as an example the long-time behavior (t2 ~ oo) of the 
autocorrelation function Xmm(r; t2, tl). At large times (t2 ~ oo) the terms in 
(3.13) proportional to S, and S* are negligible in comparison to )G, so 
that (3.13) simplifies to 

"~ Cm(tl) { Ymrn(t2, tl) g(r; 2D(t 2 - tl)) Kmm(r; t2 ' t l  ) 0 

+ )~m(t2, t l )[A1 + mA2 + e2'l(A2 + mA3) 

+ rag(r; 2D(t2 - t l ) )]  } (3.15) 

where A i - A i ( r ; t 2 ,  tl). We further specialize to the case r = 0 ,  which 
corresponds to local memory effects in the system. Putting r = 0 in (3.15), 
we find that Xmm(0; t2, tl) behaves for t2 ~ oo as 

~Cmm(O;t2, t l )~o-(m,  tl)(4~Dt2) a/2C,~(tl)Cm(t2) (t2 ~ O0) (3.16a) 

where the prefactor a(m, tl) is given by 

a(rn, tl) = [ - 1 + m! em~l/mm(1 - z l ) ] m  

- d { q l ( t l ) + m q 2 ( t l ) + e 2 t l [ q 2 ( t x ) + m q 3 ( t l ) ]  +rnt l}  (3.16b) 

and qi(t)=-~t o dr' Q~(t', t)t'. Equation (3.16a) shows that the information 
about the number of m-mers at tl decays due to diffusion [factor 
(Dr2) -el2] and due to reactions [factor e,,(t2)], and finally there is a 
prefactor a(rn, t~) determining the sign of the correlations. Analysis of 
(3.16b) shows that a(m, t~) is positive (as is to be expected) at sufficiently 
large times [t~ > T0(m)] and negative at short times [t~ < T0(m)], where 
the crossover time To(m ) is for large m given by To(m ) ~ �89 In m. Thus we 
obtain the surprising result that a deficiency of m-mers somewhere in space 
at an early time tl implies on the average a surplus in the same region at 
large times. 

4. POISSON INIT IAL C O N D I T I O N S  

In the previous sections it was assumed that, initially, the system is 
strictly homogeneous: uk(r, 0 ) =  ck(0) for all r. In this section I investigate 
the influence of small deviations from the homogeneous initial state on the 
spatial fluctuations. In particular, it will be assumed that at t = 0  the 
clusters are distributed over the system according to Poisson statistics. (29) 
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First consider a large system (of volume V--* oe and mass M =  V), 
whose initial state deviates slightly from the uniform state: 

Um(r , 0) ~- Cm(O ) q- ~m(r, 0) (4.1) 

The concentrations cm(0) are fixed by the requirement Yv dr ~m(r, 0 ) =  0. I 
assume that the deviations ~m(r, 0) are mesoscopic, i.e., that the fluctuations 
y~ dr ~m(r, 0) in small cells (v < V, but v >> 1) are at most of the order of 
v ~/2. In this case the average density (urn(r, t)) ,  too, deviates mesoscopi- 
eally from the uniform state: 

(u . . ( r ,  t) ) - cm(t) + (~m(r, t)) (4.2) 

where cm(t) is the solution of (1.1). The mesoscopic deviations from unifor- 
mity (~m(r, t ) )  satisfy the same linearized macroscopic law as the correla- 
tion functions X,m, i.e., 

~t (~m(r, t ) )  = A,~(t)(~j(r, t ) )  +Dmd(~m(r, t)) (4.3) 
j = l  

to be solved subject to (~m(r ,  0 ) )  = ~_m(r, 0). Furthermore, it was shown in 
ref. 5 (Section 5) that the fluctuations about (urn(r, t ) )  are not affected by 
mesoscopic deviations in the initial state, i.e., that in this case the factorial 
cumulants are also given by E,,n(r, t) in (1.5). 

Next consider an ensemble of systems (with volume V), all prepared in 
the same manner (macroscopically), but with small statistical fluctuations 
~m(r, 0) in the initial state. I assume that, at t = 0 ,  the m-mers ( m =  l, 2,...) 
are distributed according to Poisson statistics, i.e., 

~m(r, O) = 0 (4.4a) 

~m(rj, 0) ~n(r2, 0) = ~3(r I -- r2) (~mnCm(O) (4.4b) 

The bar denotes an ensemble average. As a result of (4.4), the total mass 
M in the system is also a Poisson variable: 3~r = V and ( M -  V) 2 = V. The 
macroscopic law in the ensemble follows directly from (4.2), (4.3), and 
(4.4a) as (~m(r, t) ) = 0 or, equivalently, (urn(r, t ) )  = c,,(t). The fluctua- 
tions about the ensemble average are described by the correlation function 

E*n(r, t ) ~  (~,~(rl, t)~,(rz,  t ) ) -  ~mn~(r)Cm(t ) (4.5) 

where ~m(r, t ) =  urn(r, t)-c,n(t) and r = r l - r 2 .  Calculation of E*, is the 
goal of this section. 
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The correlation function E*n is in a simple way related to Era, of 
Section 2, namely 

E*n(r. t) = E,..(r. t) + Hm.(r. t) (4.6) 

where II.,~,~ is defined as 

Hmn(r , t)==- (~m(rl, t))(~n(r2,  t ) )  (4.7) 

The kinetic equation for Hm. follows directly from (4.3) as 

H.,n(r, t) = ~ [AmjHj. + A.sHm j] + (D,~ + Vn) AHmn (4.8a) 
j ~ l  

//m,(r, 0) = 6mn(~(r ) cm(0) (4.8b) 

Equation (4.8b) follows directly from (4.4b). Combination of (4.8) and 
(1.3a) shows that E*,  is determined by the same equation (1.3a) as E,~,, 
but now with the initial condition E*~(r, 0) -- 0. Therefore E*, is given for 
general initial conditions by the results of Appendix A, and may be 
calculated by inversion of (A.12). 

However, for monodisperse initial conditions it is much simpler to 
solve (4.8) directly. Its solution is easily seen to be 

H,~,(r, t) = Yml(t, O) Ynl(t, 0) g(r; 4Dt) (4.9a) 

where Yml(t, 0) follows from (3.7) and (3.11) as 

Ym~(t, O) = [a(t, O) + m(b(t, 0) + e t)] em(t ) (4.9b) 

The correlation function E*, then follows from combination of (4.9), (2.6), 
and (4.6). 

Let us consider two special cases. First consider correlations for a 
fixed value of r, with t-~ oo. In this case it follows from (2.10b) and (3.12) 
that the term H,,~ in (4.6) is (roughly) of relative order e -2' and can be 
neglected. Thus we find that at large times, for a fixed value of r, the 
memory of the initial state has faded away: the dominant fluctuations at 
large times are those generated during the reaction-diffusion process. 

Next consider the global behavior of the fluctuations. The result in this 
case is completely different. From the definition (4.5) it is clear that 

dr E* ,  gives the factorial cumulant of Nm(t), the total number of m-mers 
in the system: 

1 
f drE*.(r, t )=-~[ ( (Nm-  (Nm))(Nn- (Nn)) ) -6mn(Nm)]  (4.10) 
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From (4.6) and (4.9a) one finds that 

f dr E*n(r, t) = em~(t) + Ym~(t, O) Y.a(t, O) 

= [aZ+(m+n)(b+e ' )a+mn(2e- t+b)b]  CmC n (4.11) 

with a = a(t, 0) and b = b(t, 0) given by (3.12). Obviously S dr E* n vanishes 
at t =0:  we started from a Poisson distribution. For t > 0  we see from 
(3.12) that a(t, 0) and b(t, 0) are negative, so that 

f d r E * , ( r , t ) ~  - �89  (t+O) (4.12a) 

f dr E*~(r, t) ~ t2CmC. > 0 (t--* oo) (4.12b) 

Consequently, the numbers Nm(t ) (m = 1, 2,...) follow sub-Poisson statistics 
if t is sufficiently small It < Tl(m, n)], and super-Poisson statistics if t is 
large [ t >  T~(m, n)]. The crossover time T 1 is, e.g., given for m = n >  1 by 
T~(m, m),-~lnm. Note that the large-time behavior in (4.12b) is entirely 
determined by Hm,(r, t), i.e., by the memory of the initial state. 

5. U P P E R  C R I T I C A L  D I M E N S I O N  IN T H E  M O D E L  Kij=i+j 
The upper critical dimension d C is the boundary dimension for the 

validity of the mean field approximation (Smoluchowski's equation) at 
large times. For dimensions d >  d o the fluctuations about the mean field 
solutions are small, and the mean field theory predicts the correct 
asymptotic behavior as t ~ oo. For d <  do the fluctuations are large, and 
the predictions from the rate equation are incorrect at large time s.(~8'3~ 
Note that the definition of d c emphatically refers to the large-time limit: at 
short and intermediate times the rate equation is always applicable due to 
the assumption D ~> 1 (reaction-limited aggregation). 

In ref. 5, Section 4.5, a criterion was developed for the validity of the 
mean-field approach (Smoluchowski's equation) at long times ( t ~  oo). 
The criterion simply states that the reaction part of the rate equation for 
the number of k-mers in a celt of size v contains a macroscopic contribu- 
tion Sk(t) and a contribution due to fluctuations Fk(t), 

at dr (u~(r, t ) )  R = Sk(t) + F~(t) (5.1a) 
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and that the mean-field description is applicable as long as the fluctuations 
are small : 

Rk(t) = IFk(t)/Sk(t)[ ~ 1 (5.1b) 

The contributions Sk(t) and Fk(t) are given by integrals over a cell of 
volume v. Their explicit form is 

Sk(t) = vkk(t) (5.2a) 

Fk(t) -1- ~ Kij f  drEi,(r, t)  - k KkjfvdrEki(r , t )  (5.2b) 
--2 i+j=k j = l  

with Ok given by (1.1) 
The cell size v occurs in (5.2) since, in order to derive the kinetic equa- 

tions (1.1) and (1.3), one has to discretize the space. (4'29) The cell size v is 
bounded from below by the requirement (5.1b) that the fluctuations are 
small. An upper bound on v follows from the requirement that the cell 
diameter should be small compared to: (i) the correlation length, in order 
that the discretization of the diffusion terms is allowed; and (ii) the distance 
traveled by a cluster during its lifetime, in order that the mean field 
assumption within each cell is allowed. Physically it is rather obvious that 
condition (ii) implies condition (i). From Section 2 we know that the 
correlation length at large times is O 1/2, so  that the cell size is in any case 
bounded from above by v ~ D ~/2. The mean field theory breaks down as 
soon as the upper and the lower bounds on the cell size can no longer be 
reconciled. 

The behavior of Sk(t) and Fk(t) at large times follows from (1.7), (2.6), 
and (2.9) as 

s~(t)  ~ - vet( t)  ] 

Fk(t) ~ -- f dr [-Ax(r , t) q- M2(t) A2(r, t)] c~(t) 
% 

( t+m)  
(5.3a) 

(5.3b) 

so that the criterion (5.1) yields, with the use of (2.9), 

Rk(t) ~ v - l e  2t dt' e-Z"(2t ' -  1) dr g(r; <{ 1 (5.4) 

Analysis of (5.4) shows that the large-time behavior of Rk(t) is different in 
different dimensions: 

Rk(t) oc e2tD-V2 (d=  1, t-+ oo) (5.5a) 

oc e2'D-I ln(D/v) (d=  2, t--+ oo) (5.5b) 

OC e2tD--lv--(d--2)/d (d> 2, t ~ oo) (5.5c) 
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but in all cases Rk(t ) increases exponentially with time. The proportionality 
constants in (5.5) depend only on the dimension d. 

The large-time behavior (5.5) of Rk(t) gives rise to two remarks. First, 
the upper critical dimension d C is the dimension above which the 
fluctuations remain finite (and small) as t ~  oe. From (5.5) we see that 
such a dimension does not exist, i.e., that the upper critical dimension for 
the model Ku=  i + j  is de.= ~ .  Note that d = 2  is a special dimension 
(bringing additional logarithms), at least as far as the prefactor of e zt is 
concerned. However, these differences in prefactor (and hence the speciality 
of d =  2) are utterly irrelevant at large times. At the moment the general 
feeling, (32 35~ mainly based on the model K~ = 1 (see Section 6), seems to be 
that the upper critical dimension in aggregation processes is d c = 2. The 
exactly soluble model Ko=  i + j  shows that this is not so: the value of dc 
is model dependent. 

The second remark is that one can use (5.5) to obtain an estimate of 
the region of validity of the mean field approach. From (5.1) it follows that 
the mean field approach breaks down if Rk(t) --~ 1, which happens at large 
times ( t > t o ) .  An estimate for the time tD at which the Smoluchowski 
approach breaks down may be determined from (5.5). To obtain an upper 
bound on to, we drop the logarithm in (5.5b) and set v = D  d/2 in (5.5c). 
The result is to -~ (d/4) In D for all d~> 1. 

What are the implications of the upper bound t o-~ (d/4) ln D for 
aggregation experiments? To see this, consider d = 3  and focus on a 
monodisperse initial distribution. Let the volume fraction of the suspension 
be p. In the units of this paper, the typical lifetime T of a monomer is of 
the order of unity, T-~ 1. If the sticking probability in a collision is p and 
the average collision time is %, then clearly T =  r ip .  On the other hand, 
rb is equal to von Smoluchowski's (~) "coagulation time" (he considered 
p =  1), so that rb -~ (4rcDRvo) -I. Here R is the radius of a monomer (in our 
units R ~ p~/3), and Vo is the number density (in our units % =  1). Hence 
one finds that D ~ (4~p)-~p-I/3, which yields the estimate 

to ~ 3 ln(47zpp,/3)-i (5.6) 

In polymerization experiments, where, for instance, (81 p-~ 10 3 and p =  
10 9-10-13, this would imply to -- 15-20. 

6. E X T E N S I O N S  A N D  D I S C U S S I O N  

I start the discussion with an extension to more general models of the 
scaling behavior of the fluctuations found in Section 2. For  this purpose it 
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is convenient to consider the large class of homogeneous kernels 127'28) 
characterized by exponents/~, v, and 2, i.e., 

K(i, j )  = a ;K(ai,  aj) (all a > 0) (6.1a) 

K(i, j )  ,,~ Uj  v (j~> i; # + v = 2) (6.1b) 

For such kernels it is known (27'28) that 2 > 1 corresponds to gelling and 
,~ ~< 1 to nongeUing models. Only nongelling models (2 ~< 1 ) are considered 
in this paper. Concerning the diffusion coefficients, it is assumed that D~ 
falls off algebraically, Dk ~ Dk  ~, with an exponent c~ >~ 0. 

Scaling laws for homogeneous kernels are readily obtained. In the 
presentation I distinguish kernels (like K o = i+  j )  with 2 = 1, and kernels 
(like Kij = 1) with 2 < 1. 

Consider models with 2 =  1 first. 3 For  the special model K o =  i + j  it 
was found in Section 2 that the fluctuations show scaling behavior, inde- 
pendent of the initial conditions. The scaling law is given by Eq. (2.12a) or 
(2.12b). Could it be that this scaling law holds generally for homogeneous 
kernels? To investigate this question, we substitute the scaling form (2.12a) 
into the kinetic equation (2.2a) and check whether (2.12a) is consistent. 
Using the results of ref. 20, Section 7.2, one finds the following results. If 
the diffusion constants are independent of the cluster size (c~ = 0), then 
(2.12) is indeed consistent for all homogeneous kernels with 2 =  1 and 
# = 0. If, on the other hand, e > 0, one finds that Finn(q, t) satisfies the same 
scaling law (2.12a), but with D1/2q replaced by [Ds( t ) -~]  1/2q. Similarly one 
finds for the correlation functions Emn in position space that 

Em,(r, t) dr s ~ s( t )_3t l (ul ,  U2, R) dR (6.2a) 

where Ul = m/s(t) ,  u2 = n/s(t), and 

R =- r/rl(t); rl(t  ) = [Ds( t ) -~]  1/2 (6.2b) 

The scaling limit S is defined such that R is kept fixed as s(t) --* oe. Note 
that the general scaling law (6.2) reduces to the previous result (2.12b) if 
0~ =0.  

The length rl(t)  in the scaling law (6.2) plays the role of a correlation 
length. In the exactly soluble model K U = i + j, with Dg = D, the correlation 
length remains finite as t ~ 0% namely rl(t) ~ D m, so that the correlations 
are localized at large times. The general result (6.2) shows that the 

3I consider only kernels (like Kij=i§ with 2= 1 and #=0. Kernels with 2= 1 and/~>0 
are special, ~28) and have, to my knowledge, never been proposed as realistic models for 
irreversible aggregation. 
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correlations are always localized for 2 =  1: the correlation length r~(t) 
approaches a constant if e = 0, and decreases as a function of time if e > 0. 
This decrease is due to the immobility of large clusters [-k -~ s(t)]. 

Next consider models with a degree of homogeneity )~ < 1. For such 
models it was shown in ref. 6 that the fluctuations show scaling behavior of 
a slightly different form, namely 

Emn(r, t) dr s '  s(t) 3 q(ul, u2, R')  dR '  (6.3a) 

R' = r/ro(t); ro(t) - [Dts( t ) -~]  1/2 (6.3b) 

The definition of the limit S' in (6.3) differs from that of S in (6.2) in that 
R'  (instead of R) is kept fixed as s(t) ~ ~ .  The scaling law (6.3) in the limit 
S' is valid also for models with 2 = 1, but in this case the result is somewhat 
trivial. ~6) One finds for 2 = 1 that the profile of the fluctuations contracts to 
a delta peak: r/(ul, u2, R ' ) = q ( u l ,  u2)6(R').  This only shows that the rele- 
vant length scale r~(t) for 2 = 1 is smaller than the relevant length ro(t ) in 
(6.3). 

In the exactly soluble model K, j= 1, with D k = D ,  the correlation 
length increases in the same manner  as for pure diffusion: ro(t)= (Dt) m. 
From the generalization (6.3) for )o<1, in combination with the 
known (27'28) time dependence of the average cluster size, s( t )=So tl/(1-;), 
it follows that ro(t ) oc (Dt~) m as t ~ o o ,  with an exponent /~___ 
( 1 - c ~ - 2 ) / ( 1 - 2 ) .  This shows that the sum of the exponents c~+2 
determines the time evolution of the correlation length: ro(t ) increases with 
time if e + 2 < 1, approaches a constant if e + )4 = 1, and decreases if 
c~ + 2 > 1. Note that purely diffusive behavior (/~ = 1) is obtained only for 
c~ = 0. For e > 0 one finds/~ < 1, so that in this case ro(t) grows more slowly 
than in pure diffusion. Localization occurs if c~ + )~ >~ 1. 

The second subject to be discussed is the value of the upper critical 
dimension, do = oo, found in Section 5. Concerning upper critical dimen- 
sions in aggregation processes, the following is known. For  the simple 
model A + B ~ inert, with CA(O) = C~(0), or 

Kg = • il 6j2 -~ (~ i26jl  (6.4) 

it was shown by Toussaint and Wilczek (36) and Kang and Redner (3~ that 
do=4.  Kang and Redner also showed that d e = 2  for the model 
A + A ~ inert, or K 0 = ~ 6j~, and conjectured do = 2 for A + A ~ A. This 
conjecture was proved by Peliti. ~37) The relevance of A + A - - , A  for 
aggregation processes is that K U = 1, with D k = D, implies this reaction if 
one considers only the number of clusters. (3~ Finally, Elderfield (34) argued 
in perturbation theory that do = 2 for the reversible reactions A + A ~ A 
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and A i + Aj ~- Ai+j (with K~ = 1 and Dk = D). This result, 
in combination with computer simulations, (17 19,38.39) has led to the 
feeling (32-35) that generally de= 2 in aggregation processes, in spite of the 
exactly soluble counterexample (6.4). 

In this paper I showed that d c = oe for K~ = i + j with Dk = D. Could 
this result also be obtained from perturbation theory? (34"37) To see this, 
consider a field theory where the evolution operator can be represented as 
a path integral with action S =  So + $1. The free part So of the action 
describes the diffusion, the perturbation S 1 describes the reactions. The 
propagator corresponding to So is purely diffusive, and so are the zeroth- 
order correlation functions E(~ t). Now consider the nonperturbative 

m n  t = ,  

large-time results (2.10), or the scaling law (2.12), which show that the 
correlation length remains finite, rl(t  ) ~ D  1/2, a s  t ~ oe. It seems that this 
result can never be obtained from finite-order perturbation theory about a 
diffusive free theory. Thus, it seems essential to use the real, instead Of the 
free propagators. The situation here is reminiscent of epidemics with 
sensibilization, where Cardy (4~ has shown that the free fixed point is 
unstable in any dimension. 

The time dependence of the correlation lengths rl(t)  and ro(t) 
discussed above shows that the correlation functions are nondiffusive for all 
homogeneous kernels with 2 = 1, and for kernels with 2 < 1 provided that 

> 0. For  such models there is no basis for an upper critical dimension 
dc=2.  Indeed, one can show that generally d c= oc for models with 
localized correlations (c~ + 2 ~> 1 ). For  models with e + 2 < 1 it is possible to 
show that the upper critical dimension is given by d c = 2 / ( 1 - e - 2 ) .  
Details concerning these results can be found in Ref. 41. 

What does our result for 2 -- 1 imply for experiments? I emphasize that 
d~. = oe does not imply that Smoluchowski's equation is invalid. The mean 
field approach is perfectly suited, provided that the aggregation process is 
reaction limited and the times considered are not too large. Deviations 
are to be expected only at large times. Meakin (32) suggests, on the basis 
of computer simulations, that the experiments of Weitz e t a / .  (21) and 
von Schulthess eta/ .  (25) have not yet reached their asymptotic stage. This 
paper supplies analytic evidence that this suggestion is presumably correct: 
at large times one expects the reaction to slow down in comparison to the 
Smoluchowski theory due to spatial fluctuations. Recently some very inter- 
esting DLA and RLA experiments were published by Broide. (33) Broide 
finds that his results can reasonably well be decribed by K o ~- i + j at short, 
but not at large times. At time t ~-10 there occurs a crossover from 
exponential growth to moderately slow behavior. Actually, on the basis of 
our estimate (5.6) and Broide's experimental data (d--3,  p _~2.5 x 10 -5, 
p _ 1/500) one would expect a crossover already at an earlier time (tD - 6). 
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My expectation is that the observed crossover at t--  10 is a direct conse- 
quence of large spatial fluctuations. 

Finally, I summarize the results. The subject of this paper was a model 
for irreversible aggregation, characterized by exponential growth of the 
mean cluster size. The equal-time and two-time correlation functions 
have been calculated exactly for a spatially uniform and monodisperse 
initial distribution. The equal-time correlation functions approach a scale- 
invariant form (independent of the initial conditions) in the scaling limit. 
Moreover, at large times the correlation length approaches a finite 
constant, r I ,,~ D 1/2, and the density fluctuations diverge at all length scales. 
The two-time correlation functions contain a wealth of information. For 
example, the m-mer autocorrelation function shows that a deficiency at an 
early time implies a surplus in the same region at large times. Our results 
for the Poisson initial condition (Section 4) show that the correlation 
functions are not very sensitive to statistical fluctuations in the initial state: 
the memory of the initial state fades away rather quickly, provided one 
considers correlations at finite distances. The upper critical dimension in this 
model is d c = oc. The mean field approximation (Smoluchowski's equation) 
breaks down in any finite dimension at a time tD "" (d/4) In D. In d = 3 this 
implies tD ~-- (3/4) ln(47rpp 1/3) 1, where p is the sticking probability and p 
the volume fraction. 

A P P E N D I X  A 

This Appendix gives the exact solution of Eq. (2.2) for the factorial 
cumulants Fmn(q, t). The solution is valid for a general initial distribution 
c~(0) and is formulated in terms of the generating function of Fm~. 

To solve Eq. (2.2), we need some results for the solution ck(t) of the 
macroscopic law (1.1) with K u = i +  j. Equation (1.1) may be solved in 
terms of the generating function F(x, t) of ck(t), i.e., 

F(x, t) = _ ~ ck(t)(e k x -  1) (A.1) 
k = l  

which satisfies a nonlinear partial differential equation 

#F F ( ~ F  ) 
0-~ = \~xx-  1 (a.2) 

The solution F(x, t) of Eq. (A.2) is implicitly given by 

F(x, t) --= e 'u(z); z(x, t) ==- F(x, t) - x (A.3a) 
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The function u(z) is determined by the initial condition F(x, O) = v(x). We 
also need an expression for the x derivative of F: 

0F 
-Gx (x, 0 = u'(z)/[u'(z) - e'] (A.3b) 

The moments Mn(t) - Zk k"ck(t) (n = 0, 1, 2) are given for general initial 
conditions by Mo(t)= Mo(O)e -t, M l ( t ) =  1, and Mz( t )=  Mz(0)e 2t. More 
details concerning ck(t) or F(x, t) can be found in ref. 15 or in Appendix A 
of ref. 20. 

Equation (2.2) can now be solved for general initial conditions by 
introducing the generating function H(x, y; q, t) of Fm,(q, t), defined as 

H(x, y;q, t ) -  ~ Fm,(q, t)(e mx- 1)(e ny-  1) (A.4) 
m , n  

If the generating function H is known, Fro,, can be calculated by inversion 
of (A.4): 

Fm.(q,t)= ~ ~ dwl dw2 ~ T - ~  w-~ H(x, y; q, t) (a.5) 

where w l - - e  x and w 2 -  eL The integration paths in (A.5) circle the origin 
in the complex wl and w 2 plane once in the counterclockwise direction. 

To obtain an equation for H in (A.4), we multiply (2.2) with 
(emx-1)(e"Y-1) and sum over all m and n. This yields a linear 
inhomogeneous partial differential equation for H, 

a--/--- ~ ( x ' t ) + @  ( y ' t ) - z - z D q ~  H 

+ F(x, t) [~x O~x (O, Y; q, t) ] 

I~-~ OH(x,O;q, t) 1 + F(y, t) Oy 

- F ( y , t ) [ ~ ( x , t ) - l l - F ( x , t ) I ~ ( y  , t ) - l ]  (A.6a) 

to be solved with the initial condition 

H(x, y; q, O) = v(x) + v(y) - v(x + y) (A.6b) 

In (A.6b) we used the initial condition (2.2b) for Fmn(q, t) and the 
definition v(x)-F(x ,  0). The difficulty in (A.6) is that (A.6a) is not a closed 
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equation for H(x, y; q, t): it also contains derivatives (aH/~x)(O, y) and 
(OH/ay)(x, 0), which have to be calculated separately. Since the subsequent 
calculations are rather straightforward, we only sketch the derivation and 
simply give the results. 

An equation for the derivative (OH/Ox)(O, y) may be obtained by 
differentiating Eq. (A.6a) with respect to x, and setting x = 0 in the result. 
Unfortunately, this equation, too, is not closed: it contains the second 
derivative (c32H/~3x ay)(0, 0). For convenience we define 

~xH (0, y; q, t) =- Hx(y; q, t) (A.7a) 

6~2H 
c3x #----f (0, 0; q, t) = Hxy(q, t) (A.7b) 

Fortunately, the equation for Hx,(q, t) is closed, as may be seen by differen- 
tiation of the equation for H x. The solution is easily found as 

Hxy( q, t) = H~y(q, 0 ) -  2 dt' M2(t')e 2~ e-2~ (A.8a) 

= -M2(O)[ l  + 2 f~ dt' e2(l+~ (A.8b) 

In (A.8b) I used the initial condition (2.2b) for Fm,(q, 0) and the explicit 
form of the second moment M2(t). 

The differential equation for Hx(y; q, t) simplifies drastically if we 
transform from the original variables (y, t) to new variables (z2, t), where 
z2=z(y,  t ) i s  defined in (A.3a). The function Hx in terms of the new 
variables is denoted by H ' ,  i.e., 

! . Hx(y; q, t) - Hx(z2, q, t) (A.9) 

The new function H" satisfies a simple ordinary differential equation in the 
t variable, which may readily be solved: 

H'(z2;  q, t) : [u'(z2) - e ']  -le-ZDq2' 

•  (a.10a) 

= [u'(z2)-e ']  le-2Dq2'[-1 +I(z2;q ,  t)] (A.10b) 
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In (A.10b) I used the initial condition Fr~(q, O) in (2.2b). The function 
I(z; q, t) is defined as 

= - f o  dt' e2Dq2C{eC+ e-Cu(z) I(z; q, t) 

x [u'(z)-e"][Hxy(q, t ')+M2(t')]} (A.10c) 

The function Hx(y; q, t) then follows from (A.9). 
The final step is the calculation of H(x, y; q, t) in (A.6). We use the 

same trick as in (A.9), and transform from the old variables (x, y, t) to new 
variables (zl, z2, t), with zl - z (x ,  t) and z2 =-z(y, t): 

H(x, y;q, t ) -H'(Zl ,Z2;  q, t) (A.11) 

As the result one finds an ordinary differential equation for H'. Its solution 
is 

H'(z, ,z2;q, t )=e 2~ u'(z ' )- l-  ui(z2----)~l H'(z, z2;q, 0) 
l u ' ( z l ) - e '  u (z2)-- e' 

+ R(zl, z2; q, t) + R(z2, zl; q, t)] (A.12a) 

where R(zl, z2; q, t) is defined as 

R(z~,z2;q,t) = -u(z~) f~ dt' e (2Dq2 1)t'u'(zl)--et' d-~ (Z2)-et' 
 -TFS) - -y  -TUS, ) -_ 7 

[ e" 1 x g'~(z2;q, t )+u,(z2)_e c (A.12b) 

The initial value H'(z~, z2; q, 0) in (A.12b) may be obtained from (A.6b) 
and (A.3) as 

H'(zl, z2; q, 0) = V(Xo) + v(yo) - V(Xo + Yo) (A. 13a) 

where Xo and Yo are related to zl and z2 by 

Xo=U(Zl)-zl;  yo-U(Z2)-z2 (A.13b) 

Equations (A.12) and (A.13) determine the generating function H of F,,~ in 
terms of the initial distribution ck(0), or u(z). 

I add several remarks. First, for monodisperse initial conditions, 
ck(0) = 6k~, the result (A.12) for the generating function may be inverted to 
yield the explicit results (2.3)-(2.7) for Finn(q, t). However, these ealcula- 
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tions are so lengthy that I prefer the presentation of Appendix B. Second, 
one can use the result (A.12) to obtain the asymptotic behavior of Fm,(q, t) 
in various limits. These results are given at the end of Section 2. Third, the 
result (A.12) is valid also for the Poisson initial conditions of Section 4. In 
this case one has F*,(q, t )=  0 instead of (2.2b). The generating function 
H* of F*,  is obtained by putting Hxy(q, 0 ) = 0  in (A.8a), Hx(z2; q, 0)= O 
in (A.10a), and H ' ( z I ,  Z2; q, 0)~0 in (A.12a). 

APPENDIX B 

In this Appendix it is verified that the explicit expressions (2.3), (2.4), 
and (2.7) for F,,,(q, t) represent indeed the solution of Eq. (2.2) if 
ck(0) = 6k1. The calculation consists of two steps. In the first step I show 
that Fro, has the form (2.3), and derive a set of coupled differential equa- 
tions for the functions c~(q, t) ( i=  1, 2, 3). In the second step it is shown 
that this set of equations is solved by c~(q, t) in (2.4) and (2.7). 

To obtain a more explicit form of Eq. (2.2), insert Akj in (1.3b) into 
(2.2). For the model K~j-- i+j ,  one finds that 

Q 
0t F,,,(q, t) = - [2 + (m + n) Mo(t) + 2Dq 2 ] Finn - -  (m + n)CmC . 

-mcm~F/~-cm~JFi ,+  ~ mciFj, 
j j i + j = m  

- n c n Z F ~ j - c ,  EjF,~J+ E nciFmj 
] j i + j  ~ n 

(B.1) 

Next we substitute the form (2.3) for F,,n into (B.1). The /@-hand side 
contains the concentrations cm and c n and their time derivatives d,, and 0n. 
The same is true for the right-hand side if we use 

Z 
i + j - - m  

Fj., = [ (cq + ~2n)Mo + (~2 + c%n)] c, (B.2a) 
J 

~ jFj.. = [(al + azn )+  (c~2+~3n)M2]cn 
J 

(B.2b) 

rnciFi, = [2(c~ t + 0%n) + rn(~ 2 + ~3n)] [d m + era(1 + mMo) ] c,, 

(B.2c) 

In (B.2c) I used Smoluchowski's equation (1.1). 

822/58/1-2-8 
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Next insert (B.2) into (B.1) and collect the terms proportional to c m Cn, 

CmCn, and CmC n. The result is 

CmCn((~l + ~2n) + CmCn(O~l -~ ~2m) 

= CmCn[(d I + 2Dq2~1 + 2~2M2) 

+ (m + n)(& 2 + 1 + 2Dq2~2 + ~3M2 + ~2) 

+ mn(&3 + 2Dq2a3 + 2~3)] (B.3) 

Dividing Eq. (B.3) by CinCh, using Eq. (1.7), i.e., 

Om/C m = (1/~)[m(1 - - r ) 2  1] (B.4) 

and comparing prefactors of 1, m + n, and mn yields 

- ( ! +  2Dq 2) ~ 1 -  2M2~2 (B.5a) E l=  

&3 = 2 e  2'"2--2(1 +2Dq2)~3 (B.5c) 

Here ~ = 1 - -e  ', as usual. The initial condition for (B.5) is 

~ l ( q ,  0)  = ~2(q,  0 )  = 0; g3(q, 0) -- - 1  (B.6) 

This follows from the requirement Em~/emn ~ cS(r), or Fmn/emn --+ 1 as t ~ 0. 
Note that the system (B.5) has the linear form ~t = Aa  + a0, with a matrix 
A( t )  that has a singularity at t = 0. 

The second step in the calculation is to verify that (2.4) and (2.7) solve 
the set of equations (B.5) for ~i(q, t). Transformation from ~i to new 
functions Zi, defined by 

x~(q, t) =- eZ~ t) (i = 1, 2) (B.7a) 

g3(q, t) = e 2(I + Dq2)t~3( q, t') + 1 (B.7b) 

yields the following set of equations for z~(q, t): 

2 
21 = - -  Zl - 2eZ'z2 (B.8a) 

-e-2t•l  - -  1 --~ ~2--)~3 - -  ( e2Dq2t- 1) (B.8b) ~2~--[. 

2 
;~3 = - z ~  (B.8c) 
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to be solved with zi(q, 0) = 0. According to (2.4), Zi has the form 

z,(q, t )=  dr' Fi(t ' ,  t ) (e  2Dq2t'- 1) (B.9a) 

with 

F I = Q , ;  r 2 =  Q2; F3=e2 'Q3  (B.9b) 

Substitution of (B.9a) into (B.8) shows that (B.9) solves (B.8) provided 
that 

0 2 
Ot F1 = - -~  F1 --2e2'F2 (B.lOa) 

Ot F2 = -~ e 2tF 1 -- 1 + F 2 -- F 3 

c~ 2 

(B.10b) 

F 3 = ~- F 2 (B.10c) 

where Fi is short for Fi(t '  , t). It is now an elementary calculation to show 
that F e in (B.9b), with Qi given by (2.7), is indeed the solution of (B.10). 
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